Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Ke Lu, ${ }^{\text {a,b* }}$ Xue-Min Duan ${ }^{\text {c }}$ and Peng-Mian Huang ${ }^{\text {d }}$

${ }^{\mathrm{a}}$ School of Pharmaceuticals \& Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, ${ }^{\mathbf{b}}$ Forestry College, GuangXi University, Nanning 530005, People's Republic of China, ${ }^{\text {c School of Pharmacy, Jiangxi Science }}$ \& Technology Normal University, Nanchang 330013, People's Republic of China, and ${ }^{\mathbf{d}}$ School of Chemical \& Environmental Engineering, Changsha University of Science \& Technology, Changsha 410076, People's Republic of China

Correspondence e-mail:
lukz1886@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.056$
$w R$ factor $=0.144$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-3-(3-Hydroxy-4-methoxyphenyl)-1-(2-naphthyl)-prop-2-en-1-one

The title compound, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3}$, was synthesized from 3-hydroxy-4-methoxybenzaldehyde and 2-(prop-1-en-2-yl)naphthalene in aqueous ethanol. The naphthalene ring system makes a dihedral angle of 15.8 (4) \AA with the plane of the benzene ring. In the crystal structure, molecules are linked into centrosymmetric dimers by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

(E)-3-(3-Hydroxy-4-methoxyphenyl1-(2-naphthyl)prop-2-en-1-one, (I), is a valuable pharmaceutical intermediate (Jardine et al., 1980; Issell et al., 1984; Stahelin et al., 1989), which was synthesized by a new method from 3-hydroxy-4-methoxybenzaldehyde and 2-(prop-1-en-2-yl)naphthalene. Its structure is reported here (Fig. 1).

(I)

The dihedral angle formed between the naphthalene ring system and the plane of the benzene ring is $15.8(4)^{\circ}$. The methoxyl group lies slightly out of the plane of the benzene ring, with atoms O 2 and C 7 deviating from the $\mathrm{C} 1-\mathrm{C} 6$ ring plane by 0.061 (2) and 0.295 (3) \AA, respectively. In the crystal structure, molecules are linked into centrosymmetric dimers by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 1).

Experimental

A mixture of 3-hydroxy-4-methoxybenzaldehyde (5 mmol) and 2-(prop-1-en-2-yl)naphthalene (10 mmol) was dissolved in aqueous ethanol ($100 \mathrm{ml}, 60 \% \mathrm{v} / \mathrm{v}$). A solution of $\mathrm{KOH}(4.0 \mathrm{ml}, 7.1 \mathrm{mmol})$ was added slowly with stirring at 323 K for 5 h . The resulting mixture was neutralized with $2 M \mathrm{HCl}$, the precipitate filtered off, washed with water, and crystallized from dichloromethane-petroleum ether (4:1 $\mathrm{v} /$

Figure 1
The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Received 10 November 2006 Accepted 15 November 2006

organic papers

v) to obtain (I) (m.p. 442-443 K). Crystals suitable for X-ray analysis were grown by slow evaporation of a petroleum ether-dichloromethane ($4: 1 \mathrm{v} / \mathrm{v}$) solution at room temperature over a period of 17 d .

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3}$
$M_{r}=304.33$
Orthorhombic, Pbca
$a=14.7417$ (11) £
$b=6.1208$ (4) A
$c=32.941$ (3) \AA
$V=2972.3(4) \AA^{3}$

Data collection

Rigaku Saturn-70 diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.980, T_{\text {max }}=0.987$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.360 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.22 \times 0.16 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

25516 measured reflections 3509 independent reflections 3105 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=27.8^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.144$
$S=1.16$
3509 reflections
215 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0656 P)^{2}\right. \\
&+0.9426 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned} .
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0075 (13)

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1}-\mathrm{H} 1 \cdots \mathrm{OB}^{\mathrm{i}}$	$0.94(3)$	$1.74(3)$	$2.6795(18)$	$176(2)$

Symmetry code: (i) $-x,-y+1,-z+1$.
The H atom of the OH group was located in a difference Fourier map and refined freely with an isotropic displacement parameter. Other H atoms were included using the riding-model approximation,

Figure 2
Part of the crystal structure of (I), showing $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as dashed lines.
with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic, and $\mathrm{C}-$ $\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

The authors thank the Science Foundation of Tianjin University for financial support.

References

Bruker (2001). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Issell, B. F., Muggia, F. M. \& Carter, S. K. (1984). Etoposide (VP-16), Current Status and New Developments. Orlando: Academic Press.
Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
Jardine, I. (1980). Podophyllotoxins, in Anticancer Agents Based on Natural Product Models. Orlando: Academic Press.
Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stahelin, H. \& Wartburg, A. V. (1989). Progr. Drug. Res. 33, 169-266.

[^0]: © 2006 International Union of Crystallography All rights reserved

